1. International units SI and the method of use

- 1—1. Sphere of application This standard specifies how to use the International System of Units (SI) and other international unitary systems, as well as units used in correlation with units from international systems, and other units which made be used.
- 1-2. Terminology and definitions Terminology used in this specification and definitions thereof are as follows
 - (1) International System Coherent system of units adopted and recommended by the International committee on Weights and Measures.

 of Units (SI)

 It contains base units and supplementary units, units derived from them, and their integral exponents to the 10th power.

 SI is the abbreviation of Systeme International d'Unites (International System of Units).
 - (2) SI unit Generic term used to describe base units, supplementary units or derived units of the International System of Units (SI) .
 - (3) Base unit Those units given in Table 1.
 - (4) Supplementary unit Those units given in Table 2.

Table 1. Base unit

Volume	Unit	Sign	Definition			
Length	Meter	m	The meter is the distance light travels in $\frac{1}{299,792,458}$ of a second in a vacuum.			
Mass	Kilogram	kg	The kilogram is a unit of mass (not weight nor force), equal to the mass of an international prototype stored in Sevres, France.			
Time	Second	s	The second is a fundamental unit of time, equal to 9,192,631,770 periods of radiation corresponding to the transition between two superfine levels of the ground state of an atom of cesium-133.			
Electric current	Ampere	А	The ampere is a unit of electric current, defined as a 2×10^{-7} newton force of attraction exerted at 1 meter intervals between two parallel current-carrying linear conductors that are infinitely small in circular cross-sectional area and infinitely long in length.			
Thermodynamic temperature	Kelvin	К	The kelvin is a unit of absolute temperature equal to $\frac{1}{273.16}$ of the absolute temperature of the triple point of water.			
Amount of substance	Mole	mol	The mole is the amount of substance of a system (with a specific composition) which contains as many elementary units (1) as there are atoms of carbon in 0.012 kilogram of pure nuclide carbon 12. The mole is used to specify both the elementary unit and system.			
Luminous intensity	Candela	cd	The candela is a unit of luminous intensity, defined as the luminous intensity of a steradian light source which emits a monochrome radiation at a frequency of 540×10^{12} , in a specified direction and at a force equal to $\frac{1}{683}$ watts.			

Note (1) The elementary unit must be specified and must be an atom, molecule, ion, electron, photon or a specified group of such units.

Table 2. Supplementary unit

Table 2. Supplementary unit					
Volume Unit Sign Definition		Definition			
Plane angle	Radian	rad	The radian is a unit of plane angle, defined as the central angle of a circle determined by two radii and an arc joining them, all of the same length.		
Solid angle	Steradian	sr	The steradian is the unit of measurement for solid angles, equal to the solid angle subtended center of a sphere by a portion of the surface of the sphere whose area equals the square of the sphere's radius.		

(5) **Derived units** The units of derived quantity in International units. Those are expressed algebraically in terms of the base units and supplementary units. Besides, the derived units that have proper names are shown in Table 3.

Example of the units derived from the base units

Volume	Derived units			
volulile	Name	Symbol		
Area	Square	m²		
Volume	Cubic	m³		
Velocity	Meter/second	m/s		
Acceleration	Meter/second ²	m/s ²		
Wave numbers	Every meter	m ^{−1}		
Density	Kilogram every cubic meter	kg/m³		
Electric current density	Ampere every square meter	A/m ²		
Magnetic field strength	Ampere every meter	A/m		
Concentration of substance	Mole every cubic meter	mol/m ³		
Specific volume	Cubic meter every kilogram	m³/kg		
Luminance	Candela every square meter	cd/m ²		

Table 3. The derived units having proper names

Volume	Derived u	nits	Expressing method by derived unit or
volulile	Name	Symbol	supplementary unit/others
Frequency	Herz	Hz	1 Hz=1s ⁻¹
Force	Newton	N	1 N=1kg·m/s ²
Pressure, stress	Pascal	Pa	1 Pa=1N/m ²
Energy, work, heat	Joule	J	1 J=1N·m
Work rate, process rate, power, electric power	Watt	W	1 W=1J/s
Electric charge, quantity of electricity	Coulomb	С	1 C=1A·s
Potential, potential difference, voltage, electromotive force	Bolt	V	1 V=1J/C
Electrostatic capacity, capacitance	Farad	F	1 F=1C/V
Electric resistance	Ohm	Ω	1 $\Omega = 1V/A$
Conductance	Siemens	S	1 S=1 Ω^{-1}
Magnetic flux	Weber	Wb	1 Wb=1V·s
Magnetic flux density, magnetic induction	Tesla	Т	1 T=1Wb/m ²
Inductance	Henry	Н	1 H=1Wb/A
Celsius temperature	Celsius degree or Degree	℃	1 $t=(t+273.15) K$
Light flux	Lumen	lm	1 lm=1cd·sr
Illumination	Lux	lx	1 lx=1lm/m ²
Radioactivity	Becquerel	Bq	1 Bq=1s ⁻¹
Quantity of absorption radio	Gray	Gy	1 Gy=1J/kg
Radio equivalent	Sievert	Sv	1 Sv=1J/kg

1-3. Integral multiplication in SI units

(1) Prefixes The multiple for composing the integral multiplication of 10 in SI units, names of prefixed and their symbols are shown in Table 4.

Table 4. Prefixes

14110 11 1 1011100								
Multiple to be	Prefixes		Multiple to be Prefixes		Multiple to be	Pref	ixes	
combined with unit	Name	Symbol	combined with unit	Name	Symbol	combined with unit	Name	Symbol
10 ¹⁸	Exsa	Е	10 ²	Hect	h	10 ⁻⁹	Nano	n
10 ¹⁵	Peta	P	10	Deca	da	10 ⁻¹²	Pico	р
10 ¹²	Tera	T	10 ⁻¹	Deci	d	10 ⁻¹⁵	Femt	f
10 ⁹	Giga	G	10 ⁻²	Centi	С	10 ⁻¹⁸	Ato	a
10 ⁶	Mega	M	10 ⁻³	Milli	m			
10 ³	Kilo	k	10 ⁻⁶	Micro	μ			

2. Table of conversion rate of JIS units attendant upon switchover to SI units

(The units contained in bold lines are SI units.)

	N	dyn	kgf
e,	1	1×10 ⁵	1.019 72×10 ⁻¹
Force	1×10 ^{−5}	1	1.019 72×10 ⁻⁶
	9.806 65	9.806 65×10 ⁵	1

	Pa∙s	сР	Р
sity	1	1×10³	1×10
Viscosity	1×10 ^{−3}	1	1×10 ^{−2}
>	1×10 ^{−1}	1×10 ²	1

Note) 1 P =1 $dyn \cdot s/cm^2 = 1 g/cm \cdot s$ 1 Pa · s =1 N · S/m²,1 cP=1mPa · s

	Pa or N/m ²	MPa or N/mm ²	kgf/mm²	kgf/cm ²
	1	1×10 ⁻⁶	1.019 72×10 ⁻⁷	1.019 72×10 ⁻⁵
S	1 > < 1 0 6	1×10 -		
Stress	1×10 ⁶	1	1.019 72×10 ^{−1}	1.019 72×10
S	9.806 65×10 ⁶	9.806 65	1	1×10 ²
	9.806 65×10 ⁴	9.806 65×10 ^{−2}	1×10 ^{−2}	1

Ę	m²/s	cSt	St
Kinematic viscosity	1	1×10 ⁶	1×10 ⁴
matic	1×10 ^{−6}	1	1×10 ^{−2}
Kine	1×10 ^{−4}	1×10 ²	1

Note) 1 St=1cm²/s, 1 cSt=1mm /S²

Note) 1 Pa=1 N/m², 1Mpa N/mm²

	Pa	kPa	MPa	bar	kgf/cm ²	atm	mmH ₂ 0	mmHg or Torr
	1	1X10 ⁻³	1X10 ⁻⁶	1×10 ⁻⁵	1.019 72×10 ⁻⁵	9.869 23×10 ⁻⁶	1.019 72×10 ⁻¹	7.500 62×10 ⁻³
	1×10 ³	1	1×10 ⁻³	1×10 ⁻²	1.019 72×10 ⁻²	9.869 23×10 ⁻³	1.019 72×10 ²	7.500 62
Pressure	1×10 ⁶	1×10 ³	1	1×10	1.019 72×10	9.869 23	1.019 72×10 ⁵	7.500 62×10 ³
Pres	1×10⁵	1×10 ²	1×10 ^{−1}	1	1.019 72	9.869 23×10 ⁻¹	1.019 72×10 ⁴	7.500 62×10 ²
	9.806 65×10⁴	9.806 65×10	9.806 65×10 ⁻²	9.806 65×10 ^{−1}	1	9.678 41×10 ^{−1}	1×10 ⁴	7.355 59×10 ²
	1.013 25×10⁵	1.013 25×10²	1.013 25×10 ^{−1}	1.013 25	1.033 23	1	1.033 23×10 ⁴	7.600 00×10 ²
	9.806 65	9.806 65×10 ⁻³	9.806 65×10 ⁻⁶	9.806 65×10 ⁻⁵	1×10 ^{−4}	9.678 41×10 ^{−5}	1	7.355 59×10 ⁻²
	1.333 22×10 ²	1.333 22×10 ⁻¹	1.333 22×10 ⁻⁴	1.333 22×10 ⁻³	1.359 51×10 ⁻³	1.315 79×10 ⁻³	1.359 51×10	1

Note) 1 Pa=1 N/m²

	J	kW•h	kgf•m	kcal
ergy, f heat	1	2.777 78×10 ⁻⁷	1.019 72×10 ⁻¹	2.388 89×10 ⁻⁴
ener ity of	3.600 ×10 ⁶	1	3.670 98×10 ⁵	8.600 0×10 ²
Work, er quantity o	9.806 65	2.724 07×10 ⁻⁶	1	2.342 70×10 ^{−3}
- ь	4.186 05×10 ³	1.162 79×10 ^{−3}	4.268 58×10 ²	1

Moto)	1	1=1	W.c	1	$J=1N \cdot m$
NOLE)	- 1	J — I	۷۷ ° S ۶	- 1	J —

Note) J=1 W*S, J=1N*III						
ate	W	kgf•m/s	PS	kcal/h		
Power, heat flow rate	1	1.019 72×10 ⁻¹	1.359 62×10 ⁻³	8.600 0 ×10 ⁻¹		
eat	9.806 61	1	1.333 33×10 ^{−2}	8.433 71		
er, h	7.355 ×10 ²	7.5 ×10	1	6.325 29×10 ²		
Pow	1.162 79	1.185 72×10 ^{−1}	1.580 95×10 ^{−3}	1		

		_
nity iity	W/(m·K)	kcal/(h•m•°C)
erma	1	8.600 0×10 ⁻¹
± Si	1.162 79	1

t of sfer	W/(m²⋅K)	kcal/(h•m²•°C)
ficient	1	8.600 0×10 ⁻¹
Coef	1.162 79	1

Specific heat	J/(kg·K)	kcal/(kg•°C) cal/(g•°C)	
	1	2.388 89×10 ⁻⁴	
Spec	4.186 05×10 ^{−3}	1	

Note) 1 W=1 J/s, PS: French horsepower

1163