
Link Cable / Wire

Link Cable

Pa Nun		V	Vire E Sele	nd No	0.	S (Stroke) 10 mm	L (Outer Length) 10 mm	Wire Dia. (Ø)	Outer Diameter	Outer End	Inclu N	uded ut	Max. Operating Force N	Dellully
Туре	No.	Le	eft	Ri	ght	Increment	Increment	Dia. (O)	(Ø)	M (Coarse)	В	Т	{kgf}	Radius Ř
	0.7					40~500	200~3000	0.75	5	M5	8	3.2	294[30]	75
CWP	1.2	M N P	03 04 05	M N P	03 04 05	40~500	200~3000	1.2	5	M6	10	3.6	706[72]	/3
	2.0	'	"	'		40~500	300~3000	2.0	6	M8	13	5	1878[192]	100

Link Wire

			nd No	о.	L 10mm Increment	Wire Dia. (Ø)	Max. Operating Force N	bending		
Туре	No.	Le	eft	Rig	ght		Dia. (O)	{kgf}	Radius R	
	0.7		03		03	40~5000	0.75	294[30]	20	
CWW	1.2	M N P	04	M N P	04	40~5000	1.2	706[72]	32	
	2.0	Ĺ	05	Ċ	05	40~5000	2.0	1878[192]	52	

Outer Length Wire Length Stroke

■ Durability & Replacement Cycle <Reference Value>

Wire	Safety Factor	Max. 60%		30%	10%	
Dia. d	Pull Count	0.1 Million Times	0.3 Million Times	0.5 Million Times	1 Million Times	
0.7		294 [30]	176 [18]	88 [9]	29 [3]	
1.2	Operating Force N[kgf]	706 [72]	424 [43]	212 [22]	71 [7]	
2.0	N[KgT]	1878 [192]	1127 [115]	563 [58]	188 [19]	

* When wiring the pulley, durability degrades depending on the pulley specifications

Wire Specifications & Elongation < Reference Value>

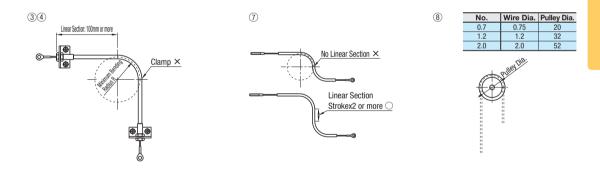
Wire		When used at the maximum operating force								
Dia. d	Structure (Twisted)	Applied Total Load Elongation			Permanent Elongation					
0.7		294N	1.17%	1.13%	0.04%					
1.2	Multi- twisted (7x19)	706N	1.13%	1.09%	0.03%					
2.0	(1210)	1878N	1.13%	1.08%	0.05%					

Li	nk C	able					Li	nk V	Vire				
Part N	umber	Wire End		Unit	Price		Part N	umber	Wire End		Unit	Price	
Туре	No.	Left/Right Combination	L~500	~1000	~2000	~3000	Туре	No.	Left/Right Combination	L~500	~1000	~3000	Γ.
		PP							PP				Γ
	0.7	MP NP						0.7	MP NP				Ī
		MM MN NN							MM MN NN				Γ
		PP							PP				Γ
CWP	1.2	MP NP					CWW	1.2	MP NP				Γ
		MM MN NN							MM MN NN				Γ
		PP							PP				Γ
	2.0	MP NP						2.0	MP NP				Ī
		MM MN NN							MM MN NN				Г

Alteration	Bracket Included			
Spec.	Shipped with the mounting brackets and scr Bolt: SCB4-10, 2 pcs. "Applicable to CWP Material: SUS304	Type CWP	No. 0.7 1.2 2.0	D 5.3 6.5 8.5
Code	BL (1 pc.)	WE	3L (2 p	ics.)

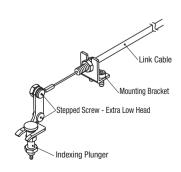
Features of Link Cable

-Generally called PULL cable - a control cable that can perform complex power transmissions to the device installed far away by transmitting the pull force and displacement, using together with various connecting parts.

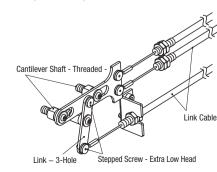

-Originally designed as the internal components of the automobiles - the power transmission component with the characteristics of "lightweight", "direct feel", "assembly", "vibration damping & sound proofing", and "safety".

- <Flexible Design/Assembly> Without requiring the joint mechanism of the intermediate area, all you need is a gap in the outer diameter to connect the drive component and the operating unit three-dimensionally.
- < Quake Resistance & Sound Proofing>Less rigid compared to the mechanical rod type and excels in sound dampening and vibration insulation.
- <Space Saving> Flexible placement of drive components and operating unit allows you to make the unit compact.
- <Reliability> Highly reliable as you can directly connect the operating unit and the drive components mechanically.

Cautions on Designing/Using Link Cables


- 1) Use it within the load capacity of the maximum operating force.
- ②To avoid loosening, make sure to secure the area where the outer tube is attached. (Depending on your situation, order the alterations of the mounting bracket and use them accordingly.)
- ③When you bend the cable for wiring, keep at least 100 mm straight to avoid creating a bending angle on the threaded area of both ends of the outer tube. Do not clamp the bending area of the outer tube. (It could degrade the durability.)
- (4) Wire the cable to make the bending angle to be above the minimum bending radius R.
- ⑤Keep the bending minimum when you wire the cable.
- (6) If you have to extend the wiring, secure the outer tube where appropriate to prevent the outer tube from moving broadly during operations.
- ⑦To wire the cable in S-shaped form, provide a linear part that is at least twice the stroke. Failure to do so will degrade the operating force by half.
- (8) Cautions on Using Link Wire

If you use the wire with a pulley, the outer diameter of the pulley must be longer than those shown in the below table. Durability varies depending on the operation speed or the load weight.



Remote Controlling of Indexing Plunger

1-Input / 2-Output Mechanism

