Characteristics of Urethane, Rubbers and Sponges

Features of High Performance Urethane and Rubber

■Urethane Properties

The characteristic values of tensile strength and elongation are tested based on the JIS standard K6251.

Item	Unit	Urethane															
item	Offic		;	Standard	i		Vulko	llan®	Abrasion	Resistant	·	Ceramic Urethane				Low Rebound	Extra Low Hardness
Hardness	Shore A	95	90	70	50	30	92	68	90	70	95	90	70	50	90	70	15
Specific Gravity	-	1.13	1.13	1.20	1.20	1.20	1.	26	1.3	20	1.13	1.13	1.20	1.15	1.13	1.03	1.02
Tensile Strength	MPa	44	27	56	47	27	46.5	60	44.6	31.3	42	26	53	45	44.6	11.8	0.6
Elongation	%	380	470	720	520	600	690	650	530	650	360	440	680	490	530	250	445
Heat resistance	°C			70			80 (120 deg. 1	or Short Time)	7	0	70		70		120	70	80
Low Temp. Resistance	°C	-40		-2	20		-2	20	-2	20	-40		-20		-20	-20	-40

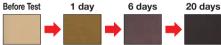
Urethane (Ether Type, Ester Type) Property Comparison

Prop	erties	Ether Type (Shore A95, 90)	Ester Type (Shore A70, 50, 30)
Tensile Stren	ngth		0
Elongation			0
Tear Strengtl	h		0
Impact Resilience		0	
Abrasion	Slip Wear		0
Resistance	Shock Wear	0	
Hydrolysis R	esistance	0	
Oil Resistano	е		0
Strength			0
Durability			0
Acid Resistance,	Alkali Resistance	0	

Discoloration of Urethane

Urethane may experience discoloration and yellowing with age. Urethane turns yellow by aging, but physical property or characteristics remain unchanged.

Discoloration is distinct especially with antistatic urethane and Vulkollan®. See the explanation below.


Aging Discoloration of Antistatic Urethane

Time to turn yellow and level of yellowing vary depending on

Discoloration of Vulkollan[®]

Vulkollan® has poorer color stability against ultraviolet rays than general urethanes due to its unique composition. Pictures below show the process of change in colors of a sample exposed to outdoor sunlight.

No change in physical property or characteristics due to discoloration.

Features of Various Urethanes

Material	Features						
Standard Urethane Ether / Ester Polyurethane	Excels in strength in repeat use and shock-absorbing properties. Can be used for applications such as Mechanical Stoppers. Ester Type is Hydrolytic. Do not use in humid and wet areas.						
Antistatic Urethane	Excels in antistatic effect. Can be used where mechanical strength and anti-static measures are required.						
Heat Resistant Urethane	CThis urethane has up to 120°C heat resistance. (70 deg. for the standard urethane) Suitable for use in applications where high material strength in high-temperature range is required.						
Super Abrasion Resistant Urethane (Vulkollan®)	Vulkollan [®] is a super abrasion resistant urethane which is far superior to conventional urethanes in abrasion resistance and load bearing. Excels in tearing strength .6 times higher in abrasion resistance and 1.5 times in material strength than the standard urethane.						
Abrasion Resistant Urethane	Unique composition realized abrasion resistance 2.5 times higher than standard urethane at low cost. Helps to reduce the exchange frequency. Color is dark brown.						
Ceramic Urethane	These MISUMI original urethane sheets are unique mixture of ceramic particles. Vulkollan® and Wear Resistant Urethane have resistant property against "surface", and the Ceramic Urethane has resistance against "line". Compared to the Standard Urethane and various rubbers, the Ceramic Urethane is relatively smooth in its machined surfaces though it is lower in hardness. Note that cutting due to contact may cause dust.						

· Characteristic Values of Antistatic Urethane Specific Volume Resistivity 2.1x10⁸Ω • cm Surface Resistivity 4 0x1090

(Test Conditions: Temperature 30°C Humidity 60%)

Taber Abrasion Test Results

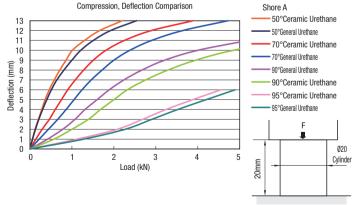
	Super Abrasion esistant Vulkollan®		Ceramic Urethane
Abrasion Test (Taber Method) Abrasion Volume (mm³)	33.9	73.8	101

Testing Method

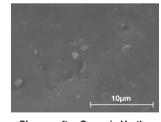
JIS K 7204: 1999 "Plastics - Determination of Resistance to Wear by Abrasive Wheels" Ahrasive Wheel: H. 22 Load: 9.8N Abrasive Wheel: H, Z2 Load: 9.ow Number of Strokes: 1,000 Test Parameter: 1 The values are not guaranteed but measured ones.

Please be advised that white section seen on the photo is ceramic powder

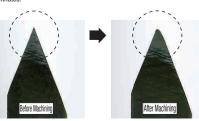
particles occurring during the manufacturing process.


These micro-particles are very fine not to create any surface roughness even

when they fall off.


Features of Ceramic Urethane

2 -389


 Deflection Comparison of Standard Urethane and Ceramic Urethane Deflection between the ceramic urethane and the standard urethane differs when the same load is applied. Careful consideration should be given for replacement.

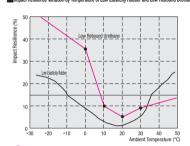
• Enlarged View of Ceramic Urethane

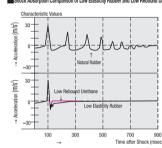
Change after Ceramic Urethane is Machined

Rubber Properties

The characteristic values of tensile strength and elongation are tested based on the JIS standard K6251.

Item	Unit		Rubber BR)	Chloroprene Rubber (CR)	Ethylene Rubber (EPDM)	Butyl Rubber (IIR)	Fluororubber (FPM)		Fluororubber (FPM)		Fluororubber (FPM)			on Rubber	r (SI) High Strength	Low Elastic (Hane		Natural Rubber (NR)
Hardness	Shore A	70	50	65	65	65	80	60	70	50	50	57	32	45				
Specific Gravity	-	1.6	1.3	1.6	1.2	1.5	1.8	1.9	1	.2	1.2	1.3	1.2	0.9				
Tensile Strength	MPa	12.7	4.4	13.3	12.8	7.5	12.5	10.8	7.4	8.8	7.8	8.3	10.3	16.1				
Elongation	%	370	400	460	490	380	330	270	300	330	400	810	840	730				
Maximum Operating Temperature	°C	90	99	100	120	120	230	230	21	00	200	60	60	70				
Temperature of Continuous Use	°C	80	80	80	80	80	210	210	1:	50	150	30	30	70				
Low Temp. Resistance	°C	-10	-10	-35	-40	-30	-10	-10	-7	70	-50	10	10	0				


Features of Low Rebound Urethane and Low Elasticity Rubber (Hanenaito®)


· Low Rehound Urethane

It has the same properties as urethane, and excels in shock absorption. With more resistance to permanent compression than standard urethane, it is hard to deform. Not suitable for absorption of large impact energy because its tensile strength and elongation resistance are weaker than that of urethane of the same hardness.

It is used as cushioning material for pallet damper conveyor machine, precision instrument etc. because of its good elongation and shock absorption. Also it is used as vibration absorption materials of various precision instruments because of its excellent vibration absorption.


Impact Resilience Variation by Temperature of Low Flasticity Rubber and Low Rebound Urethane Shock Absorption Comparison of Low Flasticity Rubber and Low Rehound Urethane

Listed values are for reference, not guaranteed.

■ Drop Comparison of Rubber Ball and Hanenaito® Ball

Elasticity of Shock Absorbing Gel P.410, 435

Shock Absorbing Gel

Normal State

Urethane, Shore A50

A major characteristic is the three-dimensional slow recovery, the function to recover after compression slowly and in multiple directions. Pressed as thin as shown in the photo and recovers to the original shape gradually after being released from pressure. * The double-layer structure of the gel part reduces stickiness

Features of Shock Absorbing Foam P.435

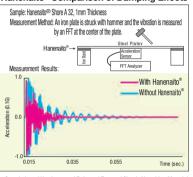
Excellent sound damping and vibration absorbing characteristics. Flexible material can be pasted on curved surfaces with ease. Lightweight material can be applied on large panel areas. Best suited for human body protection. Can be pasted in multi-layers where more protection is needed.

Steel Ball Collision Noise Level Test

PRGCW Comparison Data of PRGCW Copper Ball Collision Noise No Absorber PRGCW 5t PRGCW10t

	40	80	160	315	630	1.25K	2.5K	ЬK	10k	20k	Frequency
Item	N	o Al	osor	ber	F	PRG	CW5		PR	GC	W10
Collision Noise (dB)	П	7	1.6			67	7			63.	3
Sound Pressure			-		40% R	educed S	ound Pre	ssure	60% Red	uced So	ound Pressur

*A steel ball (Ø20, 36g) is dropped on a wooden base from a 55cm height, and the sound pressure level is measured with a microphone at a distance of 50m, positioned 50cm above the ground.


Reference: Compression Set of Low Rehound Urethane

ow Rebound Urethane	1%				
Urethane (Shore A70)	25%				

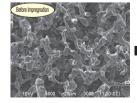
* The above data is measured at room temperature 23°C

70°Cx24H 25% Compression

Hanenaito® Comparison of Damping Effects

- 00	Clau	on or riaruness and nebound ro	ce of officer Absorbing Materials
		Hard	ness
		Extra Low (F Hardness)	High (A Hardness)
Rebound	Low	Shock Absorbing Gel	Low Rebound Urethane Low Elasticity Rubber
Meddund	Large		General Purpose Urethane

Properties of Shock Absorbing Gel


	•
Unit	Shock Absorbing Gel
-	1.0
Asker F	75
MPa	0.81
%	885
°C	100
°C	-10
	- Asker F MPa % °C

*Above figures are the measured values for the shock absorbing get as a material, and there are slight differences between the values for the bumping products made with this material featured on **P.410**, **435**.

Features of Special Urethane Foam SOFRAS® P.446

This special urethane foam excels in water retention and abrasion resistance allowing it to be used in industrial purposes such as application and moisture absorption. SOFRAS® excels in abrasion resistance and requires less concerns about dust shedding, whereas the use of sponges and felts may result in shedding of dust and felt fiber

Enlarged Photo of Grease-impregnated Special Urethane

When Applied Force

2 -390